首页> 外文OA文献 >A multiple scales approach to sound generation by vibrating bodies
【2h】

A multiple scales approach to sound generation by vibrating bodies

机译:振动体产生声音的多尺度方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of determining the acoustic field in an inviscid, isentropic fluid generated by a solid body whose surface executes prescribed vibrations is formulated and solved as a multiple scales perturbation problem, using the Mach number M based on the maximum surface velocity as the perturbation parameter. Following the idea of multiple scales, new 'slow' spacial scales are introduced, which are defined as the usual physical spacial scale multiplied by powers of M. The governing nonlinear differential equations lead to a sequence of linear problems for the perturbation coefficient functions. However, it is shown that the higher order perturbation functions obtained in this manner will dominate the lower order solutions unless their dependence on the slow spacial scales is chosen in a certain manner. In particular, it is shown that the perturbation functions must satisfy an equation similar to Burgers' equation, with a slow spacial scale playing the role of the time-like variable. The method is illustrated by a simple one-dimenstional example, as well as by three different cases of a vibrating sphere. The results are compared with solutions obtained by purely numerical methods and some insights provided by the perturbation approach are discussed.
机译:使用基于最大表面速度的马赫数M作为摄动参数,将确定由表面产生预定振动的固体产生的不粘的等熵流体中的声场的问题公式化并解决为多尺度摄动问题。遵循多尺度的概念,引入了新的“慢”空间尺度,将其定义为通常的物理空间尺度乘以M的幂。控制非线性微分方程会导致一系列摄动系数函数的线性问题。然而,表明以这种方式获得的高阶摄动函数将主导低阶解,除非以某种方式选择它们对慢速空间尺度的依赖。特别地,表明了摄动函数必须满足类似于Burgers方程的方程,其中慢空间尺度起着类似时间的变量的作用。通过一个简单的一维示例以及一个振动球的三种不同情况说明了该方法。将结果与纯数值方法获得的解进行比较,并讨论了摄动方法提供的一些见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号